Determining How to Set Regulators USC Viterbi Correctly

SCFM to Mass Flow Rate

SCFM (Standard Cubic Feet per Minute)

$$\mathsf{CFM} = \mathsf{SCFM} \times \frac{P_{atm}}{P} \times \frac{T}{T_{atm}}$$

$$\dot{m} = (CFM)\rho$$

$$\rho = \frac{P}{TR} \text{ (gas)}$$

where: CFM (cubic feet per minute)

Fluid Correction Factor

$$F_G = \sqrt{\frac{SG_{ref}}{SG_{act}}}$$

where: SG = specific gravity

 SG_{act} is the specific gravity of your system fluid.

$$SGNitrogen(pure) = 0.9669$$

$$SG^{air} = 1.0$$

Single Engine Oxygen Mass Flow Rate to SCFM

$$SCFM = \dot{m} \frac{P}{P_{atm}} \frac{T_{atm}}{T} \frac{RT}{P}$$

$$SCFM = \dot{m} \frac{T_{atm}}{P_{atm}} R$$

$$Fressures & Temperatures Cancel Out$$

Note: Don't forget about units!

(SCFM is in English units)

Note: For a better estimate take into account atmospheric temperature for the time of year

(desert has hot summers and cold winters)

For
$$T_{atm}$$
 = 40 F (277 K) \rightarrow 1190 $SCFM_{Air}$
 T_{atm} = 100 F (311 K) \rightarrow 1336 $SCFM_{Air}$

$$\dot{m}_{0} = 1.65 \, lbm/_{s} (0.75 \, kg/_{s})$$

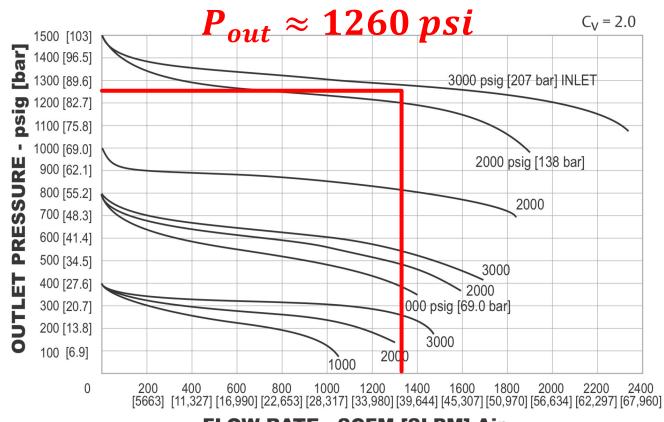
$$(\frac{m^{3}}{s})_{02} = (0.75) \frac{kg}{s} (298) K(259.8) \frac{J}{Kg-K} (\frac{1}{1.01E5}) \frac{1}{Pa} = 0.57 (\frac{m^{3}}{s})$$

$$SCFM_{02} = (0.57) \frac{m^{3}}{s} (\frac{1^{3}}{0.3048^{3}}) \frac{ft^{3}}{m^{3}} (\frac{60}{1}) \frac{s}{min}$$

$$SCFM_{02} = 1214$$

$$SCFM_{Air} = SCFM_{O2} \sqrt{\frac{SG_{02}}{SG_{air}}}$$

$$SCFM_{Air} = 1214 \sqrt{\frac{1.1044}{1}}$$


$$SCFM_{Air} = 1276$$

Single Engine Oxygen Regulator Set Pressure

For a cylinder pressure of 2600 psi and a desired flow rate of 1276 SCFM_{air}, setting the regulator to 1500 psi will result in an outlet pressure of about 1260 psi

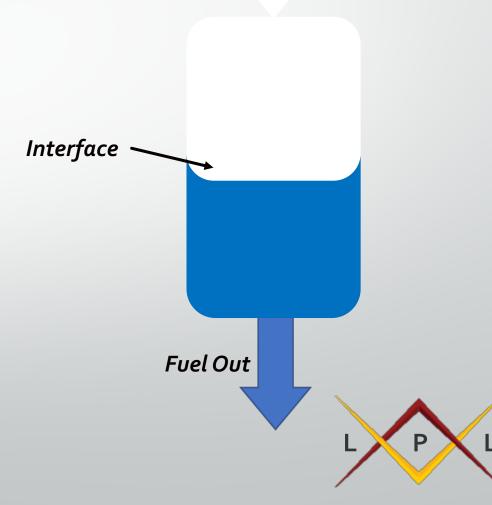
FLOW RATE - SCFM [SLPM] Air

Determining How to Set Regulators USC Viterbi Correctly

School of Engineering

Nitrogen In

Determining Nitrogen Mass Flow Rate


 $Volmetric\ Flow_{N,I} = Volumetric\ Flow_{F,I}$

Volmetric Flow =
$$\dot{m}/\rho$$

$$\dot{m}_N/\rho_{N,I} = \dot{m}_F/\rho_{F,I}$$

$$\rho_{F}=810 \ kg/m^3$$
 $P_{N,I}=\rho_{N,I}R_{N,I}T_{N,I}$

$$\dot{m}_N = rac{\dot{m}_F P_{N,I}}{
ho_{F,I} R_{N,I} T_{N,I}}$$

Single Engine Nitrogen Mass Flow Rate

 $Volmetric\ Flow_{N,I} = Volumetric\ Flow_{F,I}$

Volmetric Flow =
$$\dot{m}/\rho$$

$$\dot{m}_N/\rho_{N,I} = \dot{m}_F/\rho_{F,I}$$

$$\rho_{F}=810 \ kg/m^3$$
 $P_{N,I}=\rho_{N,I}R_{N,I}T_{N,I}$

$$\dot{m}_N = rac{\dot{m}_F P_{N,I}}{
ho_{F,I} R_{N,I} T_{N,I}}$$

NOTE: Temperature at nitrogen interface $T_{N,I}$ will change the require \dot{m}_N and needs to be taken into account . Also $\rho_{F,I}$ may vary slightly

For
$$T_{N,I}$$
 = 40 F (277 K) $\rightarrow \dot{m}_N$ = 0.06 $\frac{kg}{s}$
For $T_{N,I}$ = 100 F (311 K) $\rightarrow \dot{m}_N$ = 0.053 $\frac{kg}{s}$

$$\dot{m}_F = 0.88 \, lbm/_S \left(0.4 \, \frac{kg}{s}\right)$$

$$\rho_{F}=810 \ kg/m^3$$

$$P_{N,I} = 1450 \ psi \ (10 \ Mpa)$$

$$T_{N,I} = 75^{\circ}F (297 K)$$

$$R_{N,I} = (296.8 \frac{J}{Kg - K})$$

$$\dot{m}_N = \frac{0.4(10E6)}{(810)(296.8)(297)}$$

$$\dot{m}_N = 0.123 \, lbm/s \, (0.056 \, kg/s)$$

Single Engine Nitrogen Mass Flow Rate to SCFM

$$SCFM = \dot{m} \frac{P}{P_{atm}} \frac{T_{atm}}{T} \frac{RT}{P}$$

$$SCFM = \dot{m} \frac{T_{atm} R}{P_{atm}}$$

where
$$T_{atm} = 298 \, K$$
 $P_{atm} = 1.01 \, \text{E5 Pa}$

Note: Don't forget about units!

(SCFM is in English units)

$$\dot{m}_{N} = 0.123 \, lbm/_{s} (0.056 \, kg/_{s})$$

$$0.049(\frac{m^{3}}{s}) = (0.056) \frac{kg}{s} (298) \text{K}(296.8) \frac{J}{kg-K} (\frac{1}{1.01E5}) \frac{1}{Pa}$$

$$SCFM_{N2} = (0.049) \frac{m^{3}}{s} (\frac{1^{3}}{0.3048^{3}}) \frac{ft^{3}}{m^{3}} (\frac{60}{1}) \frac{s}{min}$$

$$SCFM_{N2} = 104$$

Note: Variations in T for the Nitrogen DOES effect the overall SCFM because it changes the required \dot{m}_N .

(desert has hot summers and cold winters)

For
$$T_{atm}$$
 = 40 F (277 K) $\rightarrow \dot{m}_N$ = 0.06 $\frac{kg}{s} \rightarrow$ 111 $SCFM_{N2}$

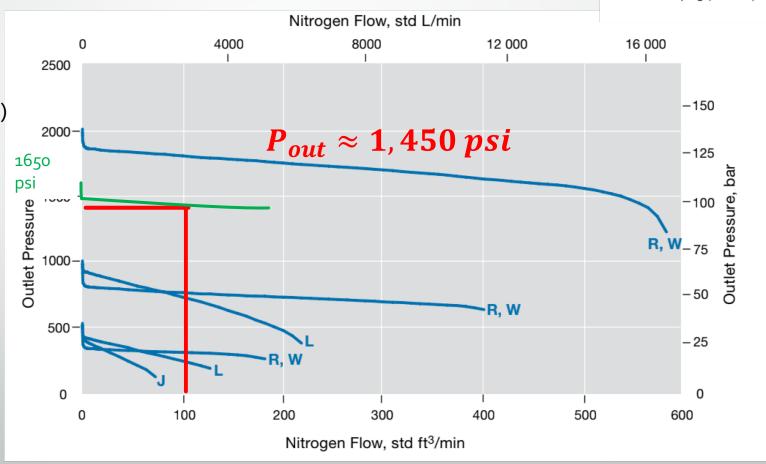
$$T_{atm}$$
 = 100 F (311 K) $\rightarrow \dot{m}_N$ = 0.053 $\frac{kg}{s} \rightarrow$ 98 $SCFM_{N2}$

USC Viterbi

School of Engineering

J 500 psig (34.4 bar)L 1000 psig (68.9 bar)

R 3600 psig (248 bar)W 6000 psig (413 bar)


Inlet Pressure

Single Engine Nitrogen Regulator Set Pressure

Desired Regulator Outlet Pressure – 1450 psi (40% pressure drop over injector and 50 psi estimated line loss)

Setting the regulator to 2,000 psi would result in a pressure drop of about 200 psi at 104 SCFM

Therefore, if we want an outlet pressure of 1,450 psi we should set the regulator to 1,650psi.

Determining How to Set Regulators USC Viterbi Correctly

Jessie & James Operating Condition Summary

Sing	o Er	aina	Ona	rating	Cand	itions
Jilly	IC LI	igilie	Ope	latilig	Cond	ILIOHS

$\dot{M}_{TOT} = 1.15 \ kg$	OF = 1.875
Fuel	OX
Injector $\%P_d = 40 \%$	Injector $%P_d = 20 \%$
Cylinder Pressure = 2600 psi	Cylinder Pressure = 2600 psi
$P_{regulate}$ = 1650 psi	$P_{regulate}$ = 1500 psi
P_{supply} = 1450 psi	P_{supply} = 1260 psi
$P_{injector} = 1400 \ psi$	$P_{injector} = 1200 \ psi$
$P_{chamber} = 1000 psi$	$P_{chamber} = 1000 \ psi$

